Protein-calorie malnutrition is diagnosed in up to 80% of the patients with esophageal cancer. Nutritional support may prevent or reverse malnutrition, and is associated with better response to cancer therapy. Serum proteins provide indirect information about visceral proteins levels. Their reduction indicates less hepatic synthesis, which is usually assigned to intake deficits. In malnourished patients with nutritional support, an increase in protein concentration will serve to document an anabolic response. As serum transferrin has a half-life of 8 days, and serum prealbumin, of 2 to 3 days, these proteins are affected earlier by acute variations in protein balance and respond to nutritional support faster. Our objective was to assess serum transferrin and prealbumin levels as markers of response to nutritional support in patients with esophageal cancer.

This study evaluated hospitalized patients with esophageal cancer at surgery clinic of Hospital de Clínicas de Porto Alegre. To determine nutritional status, patients underwent an anthropometric and biochemical evaluation. According to their nutritional status and degree of dysphagia, patients received nasoenteric tube feeding alone, an oral diet or a combined diet (oral and nasoenteric tube). Resting energy expenditure were calculated using the Harris-Benedict equation adjusted with an appropriate stress factor for cancer of 1.45. The caloric intake was provided with carbohydrate (55%), fat (25%) and protein (20%). Vitamins and minerals salts were calculated according to the Recommended Dietary Allowances (RDA, 1989). The nasoenteric tube feeding had the following characteristics: commercial polymeric formula with fibers and without saccharose or lactose. The consistency of the oral diet was adjusted to the degree of patient dysphagia. The patients received nutritional support before oncology therapy. Serum transferrin and transferrin levels were measured before and after nutritional support.

From September/2006 to August/2007, 45 patients (mean age 60.96 ± 9.08 years) were assessed, 42 with epidermoid carcinoma and 3 with adenocarcinoma. Four patients received exclusive nasoenteric tube feeding alone, 11 received exclusive oral diet and 30 received combined diet (oral and nasoenteric tube). Means nutritional duration support was 14 ± 4.72 days. There was a significant increase in serum transferrin (p < 0.001) and prealbumin (p = 0.002) levels after nutritional support.

Table I

<table>
<thead>
<tr>
<th>Variables (normal value)</th>
<th>Pre-NS</th>
<th>Post-NS</th>
<th>Variation (95% CI)</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transferrin (mg/dl) (200-400 mg/dl)</td>
<td>193.5 ± 48.7</td>
<td>215 ± 51.4</td>
<td>21.5 (11.9-31.1)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Prealbumin (mg/dl) (20-40 mg/dl)</td>
<td>17.4 ± 7.28</td>
<td>20.7 ± 6.54</td>
<td>3.27 (1.25-5.30)</td>
<td>0.002</td>
</tr>
</tbody>
</table>

* t test for paired samples.
support, table I. There was a statistically significant association between transferrin and prealbumin variations from pre-to post nutritional support ($r = 0.568; p < 0.001$).

Assuming that protein-calorie malnutrition was the primary cause of the decreased protein concentrations in the study, provision of exogenous energy and proteins would invoke proteins synthesis. This significant increase after nutritional support may reflect an increase in the rate of protein synthesis. Clinically, the earliest detection of an anabolic response, or more importantly, a suboptimal response, provides information for the timely substitution of dietary nutrients, a measure that may avoid the deterioration of a patient’s nutritional status.

In our study, serum transferrin and prealbumin levels seem to be sensitive parameters of the efficacy of short-term nutritional support in patients with esophageal cancer.

References