Revisión
The effectiveness of intervention programs in the prevention and control of obesity in infants: a systematic review

Jacqueline Costa Dias Pitangueira¹, Luciana Rodrigues Silva² and Priscila Ribas de Farias Costa³

¹Professor PhD. Center for Health Sciences, Federal University of Recôncavo of Bahia. Santo Antônio de Jesus, state of Bahia. ²Professor PhD. School of Medicine of Bahia. Head of the Paediatric Gastroenterology and Hepatology Unity. Federal University of Bahia. Salvador, state of Bahia. ³Professor PhD. Nutrition School. Federal University of Bahia. Salvador, state of Bahia. Brazil.

Abstract

Objective: This study aims to conduct a literature review to evaluate the effectiveness of intervention programs in the prevention and control of obesity in children and to map the locations where the studies were carried out.

Methods: A systematic review using the PubMed / MEDLINE and LILACS databases to trace the published literature on intervention programs for prevention and control of obesity in the period of January 2004 to October 2013. The initial search was conducted using the terms “body mass index”, “Intervention” and “children” or “adolescent” and only articles published in English, Spanish or Portuguese were selected.

Results: We found that interventions based only on advice had modest results in identifying changes in the anthropometric indicators of children and adolescents over time, although they appear to be effective in promoting positive changes in the eating habits of this population. Among the studies identified, 77.8% were conducted in high-income countries, 22.2% in middle to high income countries and no intervention studies were found in middle to low income countries.

Conclusion: Intervention programs based only on counseling are effective in promoting changes in dietary patterns, but show poor results in the changes of anthropometric parameters of children and adolescents.

(Nutr Hosp. 2015;31:1455-1464)
DOI:10.3305/nh.2015.31.4.7809

Key words: Obesity. Children. Adolescents. Intervention.
Abbreviations

WC: waist circumference.
BMI/A: Body Mass Index/age.
BMI: Body Mass Index.
W/H: Weight/height.
WHO: World Health Organization.
CNDs: Chronic Noncommunicable Diseases.
ml: milliliters.
RCT: Randomized Clinical Trial.
TV: Television.

Introduction

Obesity is a disease characterized by the excessive accumulation of body fat and has become very common in children and adolescents. Diagnosis in the pediatric population is performed, most of the time, through anthropometric indicators such as the Body Mass Index/age (BMI/A), weight/height (W/H), Waist Circumference (WC) and skin folds, taking into account the sex and the age of the individual. The BMI/A is the most used indicator in individuals over 5 years of age, and excess weight is when the BMI/A ≥ 85th percentile and <97th percentile and obesity is when this indicator is ≥ 97th percentile.

Excess weight has been an important public health problem in the world noted by its increasing occurrence in different regions. In recent reports, the World Health Organization (WHO) estimates that about 170 million children and adolescents worldwide are overweight; however, the prevalence of excess weight and obesity varies widely between countries, and sometimes within the same country, with the highest prevalence having been observed in middle to high-income countries, and the highest and fastest growth has occurred in middle to low-income countries.

In the United States, the prevalence of excess weight in children and adolescents increased from 13.9% in 1999/2000 to 31.8% in 2009/10. This trend was also observed in Canada, England, Scotland and other countries.

In Brazil, the prevalence of excess weight and obesity in children was 33.5% and 14.3%, and 20.5% and 4.9% in adolescents, respectively, with it being more prevalent in the southern and southeastern regions, and among male individuals. Over the past three decades, the prevalence of excess weight has tripled and obesity has increased more than fivefold among children, while among adolescents it has also increased steadily.

Obesity is a multifactorial disease, but it is believed that the weight gain in the pediatric population and the increasing tendency of the event have been associated with several changes over time, especially with food transition - characterized by the increased consumption of foods with a high-energy density, low-fiber, high amount of sugars and total and saturated fats; lower consumption of fruits, vegetables and whole grains - and a lower level of physical activity.

The need to control the progression of this disease, especially in children and adolescents, is urgent because, as well as the risk that excess weight and obesity poses to this population itself, other illnesses can develop at an early age than expected, such as dyslipidemia, hypertension, metabolic syndrome, type II diabetes, cardiovascular diseases, orthopedic complications, sleep disorders, hepatic steatosis and some forms of cancer. This anthropometric standard during childhood is a risk factor to the perpetuation of obesity and the development of other chronic, non-communicable diseases (NCDs) in adulthood.

In an attempt to reverse this global panorama, the WHO has developed strategies to control the progression of obesity and other NCDs. In 2004, the WHO launched the Global Strategy on Diet, Physical Activity and Health; in 2008 it developed a task force to evaluate and monitor the implementation of the Global Strategy on Diet, Physical Activity and Health; later, in 2011, it adopted a policy statement for the prevention and control of NCDs, including obesity as an urgent need for the global action plan. These proposals have a multi-sectoral approach involving health, education, culture, agriculture, industry, urban and economic planning, and they should be adapted to the reality of each location.

Since then, there has been an increase in the number of intervention programs conducted for the control of obesity, especially in developed countries. The approaches used in intervention programs are diverse, and can be punctual and specific or multifactorial, involving environmental changes, in school curriculums, the implementation of nutritional education, inclusion of regular exercise inside or outside the school with teacher or family participation, so as to favor healthy food choices and lifestyles. Some of these interventions have been effective, but the results seem to be timely, and are still limited in terms of controlling excess weight in children. Thus, the primary objective of this review is to evaluate the effectiveness of intervention studies based on counseling in the control of excess weight in children. This work also aims to map the locations where the studies were conducted.

Materials and methods

To carry out this study, a systematic review was carried out using the PubMed / MEDLINE and LI-LACS databases to identify the published literature on intervention programs for the prevention and control of excess weight in children and adolescents for the period of January 2004 to October 2013. The choice of 2004 as the starting point for the search of scientific production in the area is due to the fact that it was the launch year of the Global Strategy on Diet, Physical Activity and Health by the WHO, which stimulated the
El efecto de programas de intervención en la prevención y control de la obesidad infantil: una revisión sistemática

La efectividad de programas de intervención en la prevención y control de la obesidad infantil y adolescente ha sido objeto de numerosos estudios. En esta revisión sistemática se analizaron los resultados de estudios que evaluaron la efectividad de intervenciones para la prevención y control de la obesidad en niños y adolescentes.

Métodos

Los investigadores realizaron una búsqueda de la literatura en bases de datos médicas, utilizando los términos "intervención" y "obesidad", para identificar estudios que evaluaran la efectividad de intervenciones. Se seleccionaron aquellos que incluyeron población infantil y adolescente y que evaluaron cambios en parámetros antropométricos y de comportamiento dietético. Se excluyeron estudios que no cumplieran con los criterios establecidos.

Resultados

Se encontraron 2451 estudios potenciales, de los cuales 9 finalmente fueron seleccionados para análisis. Los resultados mostraron que la mayoría de los programas de intervención fueron efectivos en reducir el BMI, circunferencia de la cintura o espesor de la piel, y en disminuir la prevalencia de exceso de peso, así como en mejorar hábitos dietéticos y de actividad física.

Discusión

Los programas de intervención para la prevención y control de la obesidad en niños y adolescentes han demostrado ser efectivos, lo que sugiere la necesidad de continuar desarrollando estrategias dirigidas a promover un estilo de vida saludable desde la infancia.
interventions in the prevention and control of excess weight just after the ending of the intervention. James et al (2004) found a slight reduction in the prevalence of excess weight among group who participated in the intervention and increased prevalence of excess weight among participants in the control group. The difference in the prevalence of excess weight among groups (7.7%) was significant. Sichieri et al (2009) found a slight reduction in the BMI (-0.01 p = 0.009) just for girls who were overweight at the start of the study, after adjusting for age. In addition, Johnston et al (2013) observed no changes in the anthropometric indicators during the first year of the intervention, but after the second year they reported a reduction in the BMI z score (-0.08 p = 0.01) of the experimental group when compared to the control. In the study of Llagués et al (2012), we observed an increase of the BMI in both groups, but the increase was lower in the experimental group (1.96) than in control group (2.84), with a significant difference between the groups (p = 0.001) (Table II).

Black et al (2010) identified a reduction of 5% in the prevalence of excess weight among the intervention participants and an increase of 3% among the participants in the control group from the baseline to the end of the intervention, but there was not statistically significant difference between the groups (p = 0.32). However, it was observed that the reduction of 5% in excess weight among intervention participants was maintained 13 months after the end of the intervention, and that the control group had an increase of over 8%, making the total increase 11% from the baseline to the end of study. This ratio difference between the groups was statistically significant (p = 0.006).

Changes in the food intake after intervention programs were reported by five studies. James et al (2004) observed a reduction in the consumption of sugary beverages among participants in the intervention group and an increase in the control group, and the difference of the total consumption of sugary beverages was significant between the groups (p = 0.8 0.02). Sichieri et al (2009) also reported lower consumption of sugary drinks in both the intervention and control group, however the reduction in the first group was four times larger than the second group and the difference in consumption between the two groups was not statistically significant (p = 0.03). Another positive change was the increase in consumption of fruit and vegetables (2.69 p<0.05) in the experimental group when compared to the control, after 8 months of the intervention, reported by Gentile et al (2009). The decrease in the consumption of unhealthy snacks and desserts was higher for the group who participated in the intervention (-2.21 p = 0.001) when compared to the control group in the study by Black et al (2010), but a slight reduction in the consumption of fruits (-0.41 p = 0.021) was also noted. Cunha et al (2013) observed a reduction in the consumption of sweet biscuits (-1.35 p<0.001), soft drinks (-0.2 p = 0.02) and increased fruit consumption in the intervention (0.17 p = 0.04) group when compared to the control.

Changes in the level of physical activity and the time spent watching television per day after the intervention were observed timely. Black et al (2010) reported an increase in the level of physical activity (29.22 p = 0.009) and Gentile et al (2009) observed a reduction in the time spent watching TV (-2.15...
The effectiveness of intervention programs in the prevention and control of obesity in infants: a systematic review

Discussion

The programs of interventions based solely on nutritional counseling, the encouragement of physical activity and the incitement of the adoption of a healthy lifestyle have shown little effectiveness in the prevention and control of obesity in children and adolescents. In this review, we found that these interventions had modest results to verify changes in the anthropometric indicators of children and adolescents over time, although they appear to be effective in promoting positive changes in the eating habits of this population.

It is known that eating habits and a healthy lifestyle are learnt and based on social relations that are established in different living experiences throughout life, particularly during childhood and adolescence. Therefore, it is believed that the school and family environment are conducive to the development of intervention programs aimed at health promotion and NCD prevention\(^\text{21,31}\). The school was chosen for all se-

<table>
<thead>
<tr>
<th>Autor (year)</th>
<th>Study design</th>
<th>n initial</th>
<th>n final</th>
<th>Age (years)</th>
<th>Location</th>
<th>Description of the intervention</th>
<th>Duration of the intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>James et al, 2004</td>
<td>RCT*</td>
<td>644</td>
<td>574</td>
<td>7-11</td>
<td>England</td>
<td>Nutritional education to reduce the consumption of sugary drinks and prevent excess weight. (School + home activities)</td>
<td>12 months</td>
</tr>
<tr>
<td>Sichieri et al, 2008</td>
<td>RCT</td>
<td>1166</td>
<td>1134</td>
<td>10-11</td>
<td>Brazil</td>
<td>Nutritional education to reduce the consumption of sugary drinks and prevent excess weight (educational sessions + motivational games + class + inserting content into the school curriculum + educational posters + activities of 20 to 30 minutes). (School)</td>
<td>7 months</td>
</tr>
<tr>
<td>Gentile et al, 2009</td>
<td>RCT</td>
<td>1323</td>
<td>1110</td>
<td>6-12</td>
<td>USA</td>
<td>Educational sessions aimed at changing dietary habits, encouraging physical activity and a healthy lifestyle. (School + family + community)</td>
<td>8 months</td>
</tr>
<tr>
<td>Black et al, 2010</td>
<td>RCT</td>
<td>235</td>
<td>184</td>
<td>11-16</td>
<td>USA</td>
<td>Educational sessions aimed at changing eating habits and unhealthy lifestyles. (School + family + community)</td>
<td>11 months</td>
</tr>
<tr>
<td>Llargués et al, 2012</td>
<td>RCT</td>
<td>704</td>
<td>509</td>
<td>10-11</td>
<td>Spain</td>
<td>Nutritional education to promote healthy eating habits and encouraging exercise. (School)</td>
<td>24 months</td>
</tr>
<tr>
<td>Lloyd et al, 2012</td>
<td>RCT</td>
<td>222</td>
<td>193</td>
<td>9-10</td>
<td>England</td>
<td>Educational sessions to discourage the consumption of sweets, sugary drinks, unhealthy snacks and encourage the appropriate energy balance and a healthy lifestyle. (School)</td>
<td>12 months</td>
</tr>
<tr>
<td>Rosário et al, 2012</td>
<td>RCT</td>
<td>574</td>
<td>294</td>
<td>6-12</td>
<td>Portugal</td>
<td>Educational sessions to promote healthy consumption and lifestyles. (School + home activities)</td>
<td>6 months</td>
</tr>
<tr>
<td>Cunha et al, 2013</td>
<td>RCT</td>
<td>574</td>
<td>559</td>
<td>10-11</td>
<td>Brazil</td>
<td>Educational sessions based on discouraging sugary drinks, cookies and processed foods; and to encourage the consumption of fruits, water and regional foods. (School)</td>
<td>9 months</td>
</tr>
<tr>
<td>Johnston et al, 2013</td>
<td>RCT</td>
<td>835</td>
<td>629</td>
<td>7-9</td>
<td>USA</td>
<td>Educational sessions aimed at encouraging a healthy diet and lifestyle (inserting content into the school curriculum and using messages encouraging healthy eating). (School + family + individual)</td>
<td>24 months</td>
</tr>
</tbody>
</table>

*Randomized controlled trial.
<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Indicators used</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>James et al, 2004</td>
<td>BMI* (mean)</td>
<td>There was no significant difference in the BMI mean [BMI = 0.13 Kg/m² (-0.1 - 0.3)] and in the BMI z score mean [BMI z score = 0.04 (-0.04 - 0.12)] between the groups at the end of the intervention. The difference in the proportion of 7.7% (2.2 - 13.1) was statistically significant. There was a reduction in the total consumption of sugary beverages (-0.6 glasses/day) in the intervention group and an increase in the control (0.2 glasses/day). The difference of the total consumption of sugary drinks was statistically significant between the groups (p = 0.02).</td>
</tr>
<tr>
<td>Sichieri et al, 2008</td>
<td>Weight (mean)</td>
<td>The weight and the mean BMI increased in both groups (no statistical significance). For girls overweight at the start of the study, there was a slight reduction in the mean BMI [BMI = -0.01 Kg/m² (p = 0.009)] after adjustment for age. The prevalence of excess weight increased for both groups (no statistical significance). The mean consumption of sugary drinks for the intervention group reduced (-69 ml/day) group just like the control group (-13 ml/day), however the reduction was 4 times greater in the intervention group than in the control group. The difference in consumption of sugary drinks was statistically significant between groups (p = 0.03).</td>
</tr>
<tr>
<td>Gentile et al, 2009</td>
<td>BMI (mean)</td>
<td>No statistically significant change in mean BMI and physical activity level was observed. A significant increase in the consumption of fruits and vegetables [2.69 servings/week (p < 0.05)], and a reduced time spent watching TV [-2.15 hours/week (p < 0.05)] was noted, according to parents’ reports, when comparing the experimental group with the control.</td>
</tr>
<tr>
<td>Black et al, 2010</td>
<td>Excess weight declined (5%) among the intervention participants and increased (3%) among participants in the control group by the end of the intervention, however there was no statistically significant difference between the groups (p = 0.327). No difference was observed statistically for other anthropometric measures at the end of the intervention. It was further observed that there was an increased level of physical activity [29.22 minutes/day (p = 0.009)], greater reduction in snacking and desserts [-2.21 servings/day (p = 0.001)] and a reduced consumption of fruit [0.41 servings/day (p = 0.021)] among those who participated in the intervention group compared to the control group.</td>
<td></td>
</tr>
<tr>
<td>Llagués et al, 2012</td>
<td>BMI (mean)</td>
<td>There was an increase in the BMI of participants in the control group (2.84 Kg/m²) greater than the increase observed in the intervention group (1.96 Kg/m²) and the difference between the groups was significant (p = 0.001). An increase in overweight (6.95%) and obese (3.2%) in the control group and the increased prevalence of overweight (3.8%) and a reduction in obesity (-1.7%) in the intervention group was noted. The increase of overweight was higher in the control than in the intervention group (3.1%).</td>
</tr>
<tr>
<td>Autor (year)</td>
<td>Indicators used</td>
<td>Results</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Lloyd et al, 2012</td>
<td>BMI (mean), BMI/A continuous (z score) (mean), Anthropometric status (BMI/A∞ categorical), WC*** WC z score, % body fat percentage, % body fat percentage z score, Consumption of healthy snacks, Consumption of snacks with a high Energy value, Positive intake markers, Negative intake markers, Time spent watching TV, Level of physical activity, Time spent on sedentary activities</td>
<td>There were no statistically significant differences for anthropometric markers. There were no significant differences for measures of dietary intake, physical activity level, time spent in sedentary activities or watching TV.</td>
</tr>
<tr>
<td>Rosário et al, 2012</td>
<td>BMI/A continuous (z score) (mean), Anthropometric status (BMI/A∞ categorical), Consumption of kcal/day, Level of physical activity</td>
<td>No significant differences between the groups after the intervention were observed.</td>
</tr>
<tr>
<td>Cunha et al, 2013</td>
<td>BMI (mean), Anthropometric status (BMI/A∞ categorical), Consumption (biscuits, sweets, soft drinks, juices, grains e fruits)</td>
<td>There was no significant change in the mean BMI or the prevalence of excess weight among groups. There was a 3% increase in the prevalence of obesity in both groups (no statistical significance). There was a reduction of sweet biscuits [-1.35 g/day ($p < 0.001$)] and soft drinks [-0.2 glasses/day ($p = 0.02$)] in the group who participated in the intervention compared with the control. There was a further increase in the consumption of fruits (0.17 servings/day) in this group compared with the control group (-0.1 servings/day) $p = 0.04$.</td>
</tr>
<tr>
<td>Johnston et al, 2013</td>
<td>BMI/A continuous (z score) (mean), BMI (mean), Anthropometric status (BMI/A∞ categorical)</td>
<td>After 1 year of intervention no significant changes in the anthropometric variables were observed. After 2 years of intervention, there was a reduction in the BMI z score [-0.08 ($p < 0.01$)] in the intervention group when compared with the control group.</td>
</tr>
</tbody>
</table>

*BMI - Body Mass Index; **TV - television; ***WC - Waist circumference; ∞BMI/A - Body Mass Index/Age.
lected studies to undertake programs of intervention. However, some included the participation of the family23,24,26-30 and community23,30, hoping that the formation of this network (school, family and community) could lead to the adoption of healthy dietary practices, healthy attitudes and actions; providing positive changes to habits that may be considered unsuitable, hence favoring the prevention and control of excess weight in children and adolescents. The school environment is often chosen by scholars for the implementation of intervention programs because it offers many opportunities to teach about the importance of nutrition and health practices, and because it exerts strong influence on children's health, especially in communities with less favorable socio-economic conditions32. It is emphasized that interventions aimed at the family should have a better result due to the involvement of everyone in the much-needed changes in eating habits and physical activity.

The fact that high income countries have a higher prevalence of excess weight in children and adolescents than those with medium to high income6 partly explains the greater interest of these countries to develop intervention programs to address the problem, joined by the fact that economic interests are also related to the cost of diseases linked to obesity. In this review, it was observed that the development of interventions aimed at preventing or controlling childhood obesity still happens reservedly in middle to high income countries, even though they already have a high prevalence of overweight and obese children and adolescents in the pediatric population6. This data may indicate that countries started to be involved in the control of childhood obesity only when the situation reached large proportions, effectively neglecting the early prevention activities.

According to the WHO (2011)6, countries with low and middle-incomes still have a lower prevalence of childhood obesity, but it is recognized that the increase in the number of cases of excess weight and obesity in children and adolescents has occurred in a more accelerated fashion in countries with middle to low incomes, than in countries with better socio-economic conditions. This epidemiological scenario reinforces the immediate need for the planning and development of effective interventions to prevent the spread of the problem in these countries6.

BMI has been used in different ways to assess the impact of interventions on the prevention of childhood obesity, the mean BMI and BMI/A (classification of anthropometric status) forms being the most widely adopted by the studies. This result was similar to that observed in the literature review conducted by Flodmark et al (2006)33, which also includes the skin folds as notable anthropometric measures. However, the use of the mean BMI has some limitations in practical application to children and adolescents, for not taking into account the at what stage of development they are. Considering this limitation, the use and interpretation of this indicator should be performed with caution to avoid erroneous inferences34. In the pediatric population, the use of BMI/A is more suitable, since the indicator takes into account sex, age and stage of development of the individuals in childhood and adolescence, and demonstrates good applicability in clinical practice through the ease of obtaining measurements, its low cost and reproducibility1 and for presenting good correlations with the increase of body fat34,36.

Although few studies have been successful in obtaining changes in anthropometric parameters24,25,27,30, many were able to make positive changes on unhealthy eating practices23,26,27,29,30 and others on lifestyle23,30, which are the main determinants of obesity in childhood and adolescence. The dietary and lifestyle changes can prevent the development of other chronic NCDs21,37 and promote the improvement of long-term anthropometric indicators, as observed by Black et al (2010)23, where at the end of the intervention they only identified an improvement in eating habits and increased physical activity, but 13 months after the intervention observed a reduction of excess weight among intervention participants and an increase in the control group, with a significant difference in proportion. Also there was a reduction of total body fat percentage and an increase in lean body mass among the experimental group when compared to the control. According to Sicchieri and Souza (2008)38 and King et al (2011)39, longer interventions may achieve better results, but can be costly and difficult to implement11. There is the need to implement systematic programs of health education involving these issues, and not just programs conducted in a timely manner.

In one meta-analysis, Kamath et al (2008)39 also observed that the programs of interventions designed to prevent excess weight were more effective in promoting changes of eating habits and unhealthy lifestyles. Improvements in eating habits, increased physical activity and reduced time spent in sedentary activities are important determinants for the prevention of childhood obesity, without causing damage in the growth and development of children and adolescents39,40.

In certain investigations, the intervention time is short to observe effects on anthropometric indicators, but it is possible to observe positive changes in eating behavior and physical activity that may impact on the prevention of excess weight in the long term. Most of the selected studies were developed in a period not exceeding 12 months, possibly limiting the results found by the authors39. Other studies found that the decline in adiposity is generally observed in longer studies20,41 and involves a large number of participants41.

This review may be subject to publication bias, due to the increased interest in publishing studies demonstrating the beneficial effects of interventions, at the expense of those studies which do not show positive results. To achieve more effective and lasting results, the strategies used for the prevention of obesity should be
varied and complex, involving not only the individual, his school and his family\(^5,31\), but contemplating far-reaching policies, with the participation of agricultural industries, food industries, urban planning, transportation, regulatory agencies, health education, recreation and culture\(^2\). The educational process must also be continuous and ongoing, and should be reviewed periodically by professionals specifically trained and qualified for this purpose.

Given these results, it can be concluded that the programs of interventions based solely on nutritional guidance, encouraging physical activity and adopting a healthy lifestyle, and aimed at the prevention and control of childhood obesity, have been effective in promoting positive changes in the eating habits of children and adolescents, but demonstrate limited results when it comes to promoting changes in the anthropometric parameters used for evaluating the effectiveness of the intervention results. Furthermore, it was noted that interventions aimed at the prevention and control of obesity are performed only in regions where the prevalence of obesity is high. Intervention strategies need to be refined, and should include the population as a whole, even in areas where the prevalence of overweight is still low.

References