Abstract

Objective: To evaluate the association between serum uric acid and obesity among university students who participated in routine health screening in 2013.

Methods: In this cross-sectional study, 3529 subjects were analyzed. Obesity categories were classified by BMI levels references in China. And serum uric acid levels were classified by serum uric acid quartiles. Two-sample T-test and Wilcoxon Rank sum test were used to compare age, biochemical and anthropometric parameters of subjects of two genders. Rank correlation used to analyze relationship between serum uric acid and obesity.

Results: There were 1285 males (mean age, 19.8 ± 1.3 years) and 2244 females (mean age, 19.9 ± 1.3 years) in this study. Association between 2nd serum uric acid quartile and normal in male are significant and coefficient was 0.519. The 3rd serum uric acid quartile and normal in female was associated significantly (r = 0.173, p = 0.010). And associations between overweight and 3rd and 4th serum uric acid quartiles in female were significant (r = 0.128, p = 0.038 in 1st quartile and r = 0.282, p = 0.004 in 4th quartile). The 4th serum uric acid quartile and Obesity in two gender groups were significantly associated (r = 0.291, p = 0.000 in male and r = 0.484, p = 0.001 in female).

Conclusion: High serum uric acid was positively associated with obesity in overweight and obesity group. However, the association was weak between two variables because serum uric acid influenced obesity with other related factors together.

DOI: 10.3305/nh.2015.31.6.8734

Key words: Serum uric acid. Obesity. Association. University students.
Introduction

The global public has paid close attention to the prevalence of obesity. Obesity has been studied as associated to many chronic diseases, for example, breast cancer, COPD, depressive disorder and so on. In United States, the country has put in large invest to prevent youth obesity by promoting health eating and physical activity.

Serum uric acid is an end product which is produced by endogenous metabolism and exogenous urine in human beings. In various populations, serum uric acid level was strongly linked to vary kinds of MS. An independent risk factor for female abdominal obesity and MS is the elevated level of serum uric acid. According to a epidemiological study on MS, serum uric acid were significantly related to several indices, such as body mass index (BMI), waist circumference, and dyslipidemia. However, there is still lack of study on association between obesity and serum uric acid among university students.

The aim of this study was to evaluate the overall of serum uric acid level and the association between serum uric acid and obesity.

Methods

Subjects and Methods

Participants

This cross-sectional study was based on school and conducted in a university student. Those students admitted routine health screening in 2013. And there were a total of 3529 subjects in this study, aged 16-26 year old. All subjects agreed to provide their personal information regarding the purpose and the procedures of our study, and written informed consent. This study was approved by local ethics committee.

Anthropometric measurements

Height was measured with a standard stadiometer following study protocols, and weight was measured in light clothing on an electronic scales. And body mass index (BMI) was calculated by dividing the weight (kg) by the height (m) squared. Staff trained for the survey measured anthropometry and supervised by school nurses. Serum uric acid was measured by the urinate method.

Definitions

The levels of BMI defined obesity categories which based on obesity references in China. The BMI cut-off points are under 18.5 for underweight and 24 and 28 for overweight and obesity, respectively. And serum uric acid was defined on serum uric acid quartiles.

Data management

We performed R software to analyses data. Separate statistical analyses were performed for different gender, serum uric acid levels and obesity category groups. Two-sample t-test and wilcoxon rank sum test were used to compare age, biochemical and anthropometric parameters of subjects of both genders. Two line graphs were drawn for the prevalence of obesity categories and serum uric acid levels among university students by gender. Spearman rank correlation coefficients were used to evaluate the association between serum uric acid levels and obesity. Statistical significance was set at a probability level of 0.05.

Results

The serum uric acid and anthropometric measurements of the 3529 subjects for the two gender groups are shown in Table I, which include 1285 male (mean age, 19.8±1.3 years) and 2244 female (mean age, 19.9±1.3 years).

The data showed that male had higher serum uric acid level and BMI than that of female. And there were significant differences in serum uric acid, height, weight and BMI between two gender groups.

In Table II, subjects were categorized according to serum uric acid quartiles. Table II showed age, anthropometric measurements, serum uric acid and BMI for four serum uric acid quartiles groups. The serum uric acid quartile groups showed significant differences in gender, serum uric acid and anthropometric measurements.

Figure 1 shows the mean serum uric acid level according to serum uric acid quartiles by gender groups was showed. And mean serum uric acid level of male was higher than that of female in different groups.

Table I

<table>
<thead>
<tr>
<th></th>
<th>Male</th>
<th>Female</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>1285 (36.4%)</td>
<td>2244 (63.6%)</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>19.8±1.3</td>
<td>19.9±1.3</td>
<td>0.700</td>
</tr>
<tr>
<td>UA (μmol/L)</td>
<td>375.6±79.7</td>
<td>286.1±58.8</td>
<td>0.000</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>64.4±11.6</td>
<td>52.1±7.1</td>
<td>0.000</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>171.5±6.9</td>
<td>159.3±6.1</td>
<td>0.000</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>29.8±5.3</td>
<td>24.1±3.3</td>
<td>0.000</td>
</tr>
</tbody>
</table>
Prevalence of serum uric acid according to obesity groups was shown in Table III. Majority of subjects in underweight and normal group had lower serum uric acid level (80% in underweight group, 38.3% in normal group). However, in overweight and obesity group, most of subjects were in 2nd serum uric acid quartile group. And there was a trend finding in table 3 that with serum uric acid level growing, subjects was

Table II

Subjects categorized in differences serum uric acid quartiles

<table>
<thead>
<tr>
<th>UA</th>
<th>27.7-263</th>
<th>263-308.3</th>
<th>308.3-364.7</th>
<th>364.7-996.2</th>
<th>χ²</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>881</td>
<td>880</td>
<td>885</td>
<td>883</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender (male /female)</td>
<td>78/803</td>
<td>115/725</td>
<td>380/505</td>
<td>672/211</td>
<td>1040.092</td>
<td>0.000</td>
</tr>
<tr>
<td>Age (years)</td>
<td>19.9±1.4</td>
<td>19.9±1.2</td>
<td>19.8±1.4</td>
<td>19.9±1.3</td>
<td>3.412</td>
<td>0.332</td>
</tr>
<tr>
<td>UA (μmol/L)</td>
<td>228.9±29.7</td>
<td>285.8±13.0</td>
<td>334.5±16.2</td>
<td>425.2±58.5</td>
<td>425.2±58.5</td>
<td>3307.499</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>160.4±7.4</td>
<td>161.2±7.8</td>
<td>164.4±8.3</td>
<td>169.0±8.3</td>
<td>169.0±8.3</td>
<td>610.072</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>51.4±7.1</td>
<td>53.3±8.0</td>
<td>56.7±9.1</td>
<td>64.8±12.7</td>
<td>64.8±12.7</td>
<td>776.141</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>23.8±3.3</td>
<td>24.8±3.7</td>
<td>26.2±4.2</td>
<td>30.1±5.8</td>
<td>30.1±5.8</td>
<td>781.164</td>
</tr>
</tbody>
</table>

Table III

The prevalence of serum uric acid for university students according body type

<table>
<thead>
<tr>
<th>Prevalence (%)</th>
<th>underweight</th>
<th>normal</th>
<th>overweight</th>
<th>obesity</th>
<th>total</th>
<th>*</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>20</td>
<td>1251</td>
<td>1284</td>
<td>974</td>
<td>3529</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M UA(27.7-263μmol/L)</td>
<td>0(0.0)</td>
<td>11(0.9)</td>
<td>35(2.7)</td>
<td>32(3.3)</td>
<td>78(2.2)</td>
<td>59.513</td>
<td>0.000</td>
</tr>
<tr>
<td>UA(263-308.3μmol/L)</td>
<td>0(0.0)</td>
<td>25(2.0)</td>
<td>60(4.7)</td>
<td>70(7.2)</td>
<td>155(4.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UA(308.3-364.7μmol/L)</td>
<td>0(0.0)</td>
<td>51(4.1)</td>
<td>146(11.4)</td>
<td>183(18.8)</td>
<td>380(10.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UA(364.7-996.2μmol/L)</td>
<td>0(0.0)</td>
<td>36(2.9)</td>
<td>172(13.4)</td>
<td>464(47.6)</td>
<td>672(19.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F UA (27.7-263μmol/L)</td>
<td>16(80)</td>
<td>479(38.3)</td>
<td>260(20.2)</td>
<td>48(4.9)</td>
<td>803(22.8)</td>
<td>101.421</td>
<td>0.000</td>
</tr>
<tr>
<td>UA (263-308.3μmol/L)</td>
<td>1(5)</td>
<td>367(29.3)</td>
<td>290(22.6)</td>
<td>67(6.9)</td>
<td>725(20.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UA (308.3-364.7μmol/L)</td>
<td>1(5)</td>
<td>222(17.7)</td>
<td>216(16.8)</td>
<td>66(6.8)</td>
<td>505(14.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UA (364.7-996.2μmol/L)</td>
<td>2(10)</td>
<td>60(4.8)</td>
<td>105(8.2)</td>
<td>44(4.5)</td>
<td>211(6.0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Linear-by-linear Association by gender.
descending in each obesity group. But for underweight group, it might attribute to fewer subjects in this group. And serum uric acid was changing with obesity according to trend test.

Figure 2 was shown how serum uric acid in two gender groups changed with different obesity group. Serum uric acid was growing in both male and female according to different obesity groups. Serum uric acid was rising faster from overweight to obesity especially in male.

In figure 3, the trend of BMI with serum uric acid quartiles was shown. Mean of BMI was increasing with serum uric acid level in female but mild increasing trend in male group.

Discussion

Studies were well established and brought contributions to relationship between serum uric acid and MS in different population13, 14, however, this is the first study focused on serum uric acid and obesity. In present study, we explored the prevalence of serum uric acid and the potential associations with obesity.

In this study, a positive significant association between serum uric acid and obesity has been found, especially in high serum uric acid level in overweight and obesity group. Similar result could be found in different studies13, 15, 16. And the association was stronger in females than males in both overweight and obesity group, which was consistent with findings in different populations such as people from Bangkok Thailand17, middle age Chinese9, 14 etc.

A previous study documented that males had higher serum uric acid level than females18 and the same result had been found in our study. According to this study, serum uric acid had liner correlation with obesity, and with BMI growing, serum uric acid level was elevating. As a result, increased serum uric acid may
as an indicator of obesity, but in a obesity population from American demonstrated that serum uric acid influence obesity but not independently impacted obesity. And a cohort study from UK pointed out that a causal role was not been found whilst BMI and obesity. Thus it is still uncertain whether serum uric acid can be an indicator of obesity.

Majority studies explored the relationship between serum uric acid and obesity combining various MS components together. And in these studies, serum uric acid do had significant associations with BMI and obesity based on the interaction of all related factors.

In conclusion, serum uric acid was strongly associated with obesity and further study should be established to explore deep relationship between serum uric acid and obesity by adding in more obesity related factors.

Conclusions

Serum uric acid maybe associated with obesity. However, the association also need research in future after adjust for confound factor.

Acknowledgment

This research was supported by the National Natural Science Foundation of China (81072367), the Anhui Provincial Natural Science Foundation (090413126 and 1308085MH135), and Wannan Medical key scientific research projects Engagement Fund (WK2013Z01)

Conflict of Interest

None declared.

References